
July 2010 19 www.phparch.com

FEATURE

A Rapid Application Development
Framework for PHP

If you do an internet search for PHP frameworks, you may be
overwhelmed by the number of frameworks and their features. So, after
the first glance at this article, you may say: Oh, no! Another one? I
would ask you to reserve judgment until you finish this article. Let’s
start with a few facts before moving on to a detailed introduction to
this rapid development framework.

REQUIREMENTS

PHP: 5.1+ with PDO enabled

Other Software: MySQL 5.0+

Related URLs:
• Offical website of Opendelight: http://www.
adiipl.com/opendelight

• Documentation of Framework: http://www.adiipl.
com/opendelight/docs

• PHP Data Object http://www.php.net/pdo

by Ashwini Rath

http://www.adiipl.com/opendelight
http://www.adiipl.com/opendelight
http://www.adiipl.com/opendelight/docs
http://www.adiipl.com/opendelight/docs
http://www.php.net/pdo

July 2010 20 www.phparch.com

Opendelight - A Rapid Application Development Framework for PHP

An application developer seeks to start the ap-
plication development with a bang, to focus
more on the business logic and the usability of

the application, and to manage the life-cycle of the
application with a multitude of change requirements
from clients - the same is the case with a PHP devel-
oper. The developers feel restricted from unleashing
their creativity fully because they divert their atten-
tion from implementing actual business requirements
whenever there are repeated demands to develop ap-
plication architecture, code convention, and file struc-
ture. This gives rise to the need for a development
framework that takes care of architectural require-
ments, leaving developers to focus on writing business
logic that reflects the client’s exact requirements and
develops a good user interface (UI). If developers have
access to a rapid application development tool for the
chosen framework, things become much easier. The
Opendelight framework provides exactly that, and it is
free open source software!

Opendelight framework comes with a browser-
based Integrated Development Environment (IDE) to
manage all aspects of application development, a
set of libraries to implement routine tasks, and a
fully functional skeletal application structure to start
with. All of this comes with a well laid-out file struc-
ture and a simple, robust architecture to ensure a
high performing, scalable, and secured application.

Getting Started with Opendelight – Hello
World!
Developing and publishing a working application
is quick and can be done in three simple steps:

download the framework from the website http://
www.adiipl.com/opendelight/download.php, decom-
press the framework to your development location,
and install the framework.

After you download and decompress, point your
browser to application-base-url/delight-ide/install.php
(application—base-url is the location where you
decompressed the downloaded files). Click Setup
Application, and you will be taken to a page to fill

the details of your new application: Application Name,
Author Name, Application Base URL, Description of
Application, Email Address and Database Settings (See
Figure 1). If you need further help during the instal-
lation, please refer to the documentation at http://
www.adiipl.com/opendelight/docs/installation.php.
MySQL is used for the example application. Note that
Opendelight uses PHP Data Objects (PDO) for database
access.

FIGURE 1

http://www.adiipl.com/opendelight/download.php
http://www.adiipl.com/opendelight/download.php
http://www.adiipl.com/opendelight/docs/installation.php
http://www.adiipl.com/opendelight/docs/installation.php

July 2010 21 www.phparch.com

Opendelight - A Rapid Application Development Framework for PHP

Successful installation will provide you access to
the newly created application (application-base-url)
and Opendelight IDE (application-base-url/delight-ide)
with login information for both (Note that the admin
user, with the access role Administrator created at
installation, is the same for both the application and
IDE). Point your browser to application-url/sign.php,
which will show the Sign In form of the applica-
tion (See Figure 2). If you enter the admin login
credentials, you will see a “Hello World!” page (See
Figure 3). At this point, you have a working applica-
tion even though it is just a skeletal structure. You
can now begin implementing your actual business
requirements from within Opendelight.

It is important, though, to be aware of what
happened after the installation completed. A brief
inspection of the file structure in the root folder

of application will reveal a folder named delight-ide
- the entire IDE resides here. You can delete this
folder anytime without affecting the application.
Other folders are important for the application. The
folder /lib carries classes added to the framework
to facilitate common logic implementation during
development. The /model folder contains two subfold-
ers: class and script. The first one is meant for you
to store the classes that you will write as part of the
business logic implementation. The second one will
be used to store any legacy code. The folder /view
carries UI related files in respective subfolders. For
more details about these folders and others, please
refer to the documentation at http://www.adiipl.com/
opendelight/docs/application-file-structure.php

Opendelight currently has seven database tables
that come with the installation. These tables store
information about the application, its controllers,
events and other details. There is no need to worry
about the data in these tables nor their manipula-
tion during the application development process as
it is taken care of by the framework itself. However,

you may like to refer to the documentation at
http://www.adiipl.com/opendelight/docs/application-
database-structure.php to learn more.

Now to look at the way Opendelight treats differ-
ent aspects of an application, its development, and
its manageability. During the discussion, any appli-
cation created with the Opendelight framework is re-
ferred to as the application and the one just installed
as the example application.

Behind The Scenes - Technical Architecture
of Applications
The Opendelight framework exploits the multitier
architecture of web applications and uses the Model-
View-Controller (MVC) design pattern at the center of
application architecture. This architecture facilitates

FIGURE 3

FIGURE 4

FIGURE 2

http://www.adiipl.com/opendelight/docs/application-file-structure.php
http://www.adiipl.com/opendelight/docs/application-file-structure.php
http://www.adiipl.com/opendelight/docs/application-database-structure.php
http://www.adiipl.com/opendelight/docs/application-database-structure.php

July 2010 22 www.phparch.com

Opendelight - A Rapid Application Development Framework for PHP

an event-driven approach to data manipulation
by the application, and uses the Role-Based Access
Control (RBAC) mechanism to manage user access
control to the application. (Figure 4)

The HTTP-request from the client-side in-
stance is built within the basic URL format:
application-base-url/controller-name?ID=N. Note that
the framework also supports using other query string
parameters in the URL apart from allowing URL
beautification with the help of Apache htaccess or
IIS URL rewrite. The first part, application-base-url, is
already known. The next part, controller-name, is the
file name along with the path from the root of the
application and can be managed through the IDE.
In the example application (See Figure 5), there are
two controllers: sign.php and index.php.

A controller provides a communication end point
for other client and server systems. The first control-
ler in the example is responsible for functionality
such as signing in, signing out and password retriev-
al. It readily provides the common functions of an
application, can be enhanced by writing new classes,
and its UI can be changed by modifying the View
Page Parts or VPPs. The second controller, index.php,
manages the protected part of the application. Any
number of controllers can be added or deleted. Note
that controller-name is a file in a subdirectory, and
the entire path from the root of the application is
included.

The last part of the URL format is the query string
?ID=N, where ID is the Event ID of the application
instance and N is the value. Any controller events
can be managed through the IDE. Figure 6 shows the

FIGURE 5

FIGURE 6

July 2010 23 www.phparch.com

Opendelight - A Rapid Application Development Framework for PHP

list of events created for the controller sign.php by
default (see the lone event for controller index.php in
Figure 7).

By encouraging an event-driven approach in the
programming, the framework introduces the concept
of an event occurring when the application is called
through an HTTP-request. Any event within the ap-
plication is uniquely identified with an integer and
is called an Event ID regardless of which controller
it belongs to. On another note, the application uses
the default event for a controller, specified through
the IDE’s Edit page, if the query string does not
specify an ID in the request URL.

On the server-side, the controller receives the
request and loads the Opendelight Loader. This
is a file in the root folder of the application,
load.delight.php, that performs the task of sanitizing
and verifying the request data and then instantiat-
ing native framework objects, called Opendelight

Objects. It is important to know that the user
verification and user session tracking are done at
the framework level, and these do not need to be
worried about while developing the application apart
from determining appropriate business logic objects
and their respective UIs.

After user identity and access verification, the
controller calls the model to execute the business
logic of the application. Later, the outputs are used
to construct the view. Finally, the controller sends
an HTTP-response back to the client-side instance,
completing the cycle.

Enforcing User Access Control in
Applications
Opendelight uses an RBAC scheme to implement ac-
cess control in the application. This determines user
roles (a role can be shared among multiple users,

Opendelight IDE
provides tools to
manage access
control, user roles,
business logic, and
user interface code. FIGURE 7

July 2010 24 www.phparch.com

Opendelight - A Rapid Application Development Framework for PHP

whereas one user cannot have multiple roles), and
access to any particular instance of the application
is determined as per its association with the cor-
responding event. Creating new roles, assigning a
role to users and associating roles with an event are
done in the IDE. To see this in action, add a new
event to the controller, index.php, and then create a
new role by choosing index.php as the default control-
ler and the newly created event as the default event.
Finally, create a new user by assigning this role. The
landing page for this new user is visible after sign-
ing into the application - it is different from where
the admin user landed. With this new user session,
you will fail to access the URL of “Hello World!” until
you add this role to the event responsible.

In addition, Opendelight introduces an optional
verification through a custom conditional expression
called Event Verifier, which can be set for any event
through its Edit page in the IDE.

Object Model and Writing Business Logic
Three Opendelight Objects are created by default
with each event: $USER, $APP and $DB. $USER is only
available for a private controller, for example,
index.php. For public controllers, this object does not
get instantiated as no user authorization is required
to access it. A public controller is responsible for
serving the public pages of an application, such as
sign.php.

Both the objects $APP and $USER adhere to an active
record pattern and store all the data of an applica-
tion instance and user, respectively. Through the

IDE, you can assign different integers to be used in
the application for variables called Configuration
Variables and to use them through $APP later. The
third object, $DB, is basically the instance of PDO and
is instantiated with the database settings as entered
during the installation process. The use of PDO gives
two advantages: faster database access and rela-
tive freedom in the choice of database. The other
important aspect of PDO is its support for prepared
statements, thus preventing SQL-injection issues
that occur within applications.

These objects are used as global keywords within
the new classes that are created as part of writing
business logic. This may look a bit odd for framework
users in other languages who use dependency injec-
tion to use and extend native objects. However, this
is in sync with the simplicity of usage and is a usual
occurrence in PHP. Moreover, it does not contribute
any disadvantage to the application over the other
method.

With this knowledge about the framework, let’s
look at the “Hello World!” scenario. When the Sign
In page of the application is requested, the default
event SignIn is called since no “ID” value is supplied
in the URL query string. Similarly, when the form
is submitted with user login information, the event
Validate is called (?ID=2) and validates the supplied
user information with the information stored in the
application database. This process is part of writing
business logic:

if ($_REQUEST["hidStatus"])
{
 $oSign = new Delight_Sign();

The Opendelight
framework uses the
MVC design pattern
at the center of
the application
architecture and
uses an RBAC
mechanism to
manage user
access control to the
application.

July 2010 25 www.phparch.com

Opendelight - A Rapid Application Development Framework for PHP

 $oForm = new Delight_Form($_POST, $APP->FORMRULES);
 $aForm = iterator_to_array($oForm);		
	
 $sErrMsg = $oSign->signin($aForm, $oSign-
>sLoginToken);
}

The definition of an event allows the specifying of
Form Rules for sanitizing and validating form input
and statements calling business objects or proce-
dural code that you have written, with appropriate
conditions (called different states of an instance
of application). Examples of states can be under-
stood by referring to the display of any Edit page
in a real-world application and what happens when
a user saves after changing data in the Edit form –
two states of instance of the application with an
Edit event. In the example above, the conditional
if ($_REQUEST[“hidStatus”]) allows two states.

View – Application User Interface
Notice the few fields on the Edit page of an event:
a text box for View Page Parts (VPPs) and a few text
boxes for View Page Variables (VPVs). The for-
mer is a comma-separated list of files (with .tpl.php
extensions) with client-side code interspersed with
PHP print statements or simple loops/condition-
als. They are called sequentially, making the order
in the comma-separated list important. The client-
side code is divided into multiple files as some parts
are common, such as the header and the footer of
a page. Note that this view also involves Cascading
Style Sheets (CSS) and JavaScript, and they can be
managed from within the IDE.

In constructing a view, a few things change in

a VPP, even if it is common to other events. This
creates the requirement of storing event-specific
data in variables called VPVs. Three VPVs are already
defined with the installation: TITLE, HEADERTEXT, and
BREADCRUMB. More variables can be added through the
IDE ($APP->PAGEVARS[VARIABLENAME]), and their respective
input fields will appear on Edit page of the events.

Note: a recent version of jQuery, along with jQuery
UI, is included in the application generated at in-
stallation. Learning jQuery is not a prerequisite to
use the Opendelight framework.

How to Approach Real-World Scenarios
Creating applications requires grasping business
requirements and creating a data model. It would
take another article to explain the concepts of data
modeling, which is outside the scope of this one.
However, the end result of data modeling is a set of
objects with well-defined interactions and relation-
ships between their respective database tables.

Now the database for the application can be de-
signed and the business logic classes can be cre-
ated. The IDE assists in creating events with con-
trollers for each of the public class methods. The UI
and associated lists of VPPs for each event will also
need to be created. Each event and its states can be
tested from within the IDE. After the full applica-
tion is developed, it can be moved to a production
environment by moving the files and database to
the destination and changing the database settings
(refer to sys.inc.php in the application root folder and
application-base-url in the *od_sys table).

Opendelight framework currently provides a few
libraries (classes) for grid based data management,
form handling and CAPTCHA apart from the sign
functionality discussed in the example. Third-party
tools for applications as needed or wanted, with
their respective code stored in the /ext folder.

Opendelight IDE provides tools to manage access
control, user roles, business logic, and user inter-
face code. The Dashboard of the IDE provides a list
of items recently edited, as well as recent blog posts
and documentation links. A log of application usage
can be viewed in the IDE to track errors and test ap-
plications.

Conclusion
Opendelight framework is quickly evolving with new
features and libraries added on a regular basis. The
framework is based on mainstream features and the
simplicity of PHP, making it easy to adopt for any
web application development plan. Understanding
the conceptual details and effective use of the IDE
will enable you to create an enterprise-grade appli-
cation quickly and with ease.

ASHWINI is the CEO at ADII Research & Applications Pvt.
Ltd. (http://www.adiipl.com), a technology company
founded by him. His main interest lies in the application of
artificial intelligence techniques and algorithms in the areas
of mission-critical business solutions, application security,
self-healing information architecture and semantic web.
Learn more: http://ashwinirath.com
Contact: ashwini.rath@adiipl.com

http://www.adiipl.com
http://ashwinirath.com

	FEATURES
	Reusable Interface Design
	Opendelight - A Rapid Application Development Framework for PHP
	Good Old Propel
	Community in Action

	COLUMNS
	Editorial
	Free Stuff!

	Drupal Corner: The Most Important Rule in Site Architecture with Drupal
	JavaScript corner:
	Setting Up Shop on the Web

	Security Roundup:
	To Be on Top?

	exit(0);
	Eggs and Spy Satellites

	ElePHPants

